Modeling Dependence in Data: Options Pricing and Random Walks
نویسندگان
چکیده
OF THE DISSERTATION In this thesis, we propose the Markov tree option pricing model and subject it to large-scale empirical tests against market options and equity data to quantify its pricing and hedging performances. We begin by proposing a tree model that explicitly accounts for the dependence observed in the log-returns of underlying asset prices. The dynamics of the Markov tree model is explained together with implementation notes that enable exact calculation of the probability mass function of the Markov tree process. We also show that the tree model operates in the framework of arbitrage free option pricing. Next, we show how the discrete Markov tree process can be viewed as a generalized persistent random walk and demonstrate how to approximate it by a mixture of two normals. This derivation enables us to obtain a closed form pricing formula for the European call option allowing for faster calibration using market option data. We then empirically test both the pricing as well as the hedging performance of the Markov tree model against the Black-Scholes and the Heston’s stochastic volatility models establishing its superior hedging performance. Additionally, we also analyze different regression based techniques to estimate the parameters in the Markov tree model that obtain increasingly better hedging results. We also lay down statistical procedures to rigorously analyze the hedging performance of any option pricing model. We then generalize the Markov tree process and explore its relation with the generalized delayed random walk. In doing so, we develop a spectral method for computing the probability density function for delayed random walks; for such problems, the spectral method we propose is exact to machine precision and faster than existing methods. In conjunction with step function approximation and the weak Euler-Maruyama discretization, the spectral method can be applied to nonlinear stochastic delay differential equations. We carry out tests for a particular nonlinear SDDE that shows that this method captures the solution without the need for Monte Carlo sampling.
منابع مشابه
Variance analysis of control variate technique and applications in Asian option pricing
This paper presents an analytical view of variance reduction by control variate technique for pricing arithmetic Asian options as a financial derivatives. In this paper, the effect of correlation between two random variables is shown. We propose an efficient method for choose suitable control in pricing arithmetic Asian options based on the control variates (CV). The numerical experiment shows ...
متن کاملStochastic Models for Pricing Weather Derivatives using Constant Risk Premium
‎Pricing weather derivatives is becoming increasingly useful‎, ‎especially in developing economies‎. ‎We describe a statistical model based approach for pricing weather derivatives by modeling and forecasting daily average temperatures data which exhibits long-range dependence‎. ‎We pre-process the temperature data by filtering for seasonality and volatility an...
متن کاملApproximating Stochastic Volatility by Recombinant Trees
A general method to construct recombinant tree approximations for stochastic volatility models is developed and applied to the Heston model for stock price dynamics. In this application, the resulting approximation is a four tuple Markov process. The first two components are related to the stock and volatility processes and take values in a two-dimensional binomial tree. The other two component...
متن کاملRandom walk duality and the valuation of discrete lookback options
Lookback options are popular in OTC markets for currency hedging. The payoff of a lookback option depends on the minimum or maximum price of the underlying asset over the life of the contract. When the extreme values are continuously monitored, these options can be valued analytically (Conze and Viswanathan, 1991; Goldman et al., 1979a,b). On the other hand, when the maximum or the minimum is o...
متن کاملA Diffusion Limit for Generalized Correlated Random Walks
A generalized correlated random walk is a process of partial sums Xk = ∑kj=1 Yj such that (X, Y ) forms a Markov chain. For a sequence (X) of such processes in which each Y j takes only two values, we prove weak convergence to a diffusion process whose generator is explicitly described in terms of the limiting behaviour of the transition probabilities for the Y. Applications include asymptotics...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013